
Алексей Недоря, январь 2026

Языки программирования. Лекция 3.
Как разрабатывать.

От личного к общему

Профессия: Языки программирования и компиляторы

2

Краткая профессиональная биография:
● Первый компилятор: 1984
● Компиляторы для 9 языков программирования
● Участие в стандартизации языков программирования

○ Modula-2 ISO/IEC
○ Oberon-2 Oakwood Guidelines

● Системная архитектура
● Разработка 7 языков программирования

● t.me/vorchalki_o_prog
● http://digital-economy.ru/avtory/aleksei-nedoria-sy

nergetic-lab-ru
● https://ontonet.org/gruppy/vorchalki-o-programmir

ovanii
● http://алексейнедоря.рф/

http://digital-economy.ru/avtory/aleksei-nedoria-synergetic-lab-ru
http://digital-economy.ru/avtory/aleksei-nedoria-synergetic-lab-ru
https://ontonet.org/gruppy/vorchalki-o-programmirovanii
https://ontonet.org/gruppy/vorchalki-o-programmirovanii

Ликбез: Разработка языков программирования

3

Прочитано:
● 26.11.2025: История. Зачем и почему. запись
● 17.12.2025. Как разрабатывать. Личная история. Модула-0, Модула-Х, Вир/а0. запись

21.01.2026:
● Краткое содержание предыдущей серии
● Вир/а1
● На что опираться при разработке языка?
● Что такое современный язык программирования?
● Личный фазовый переход
● Первый корпоративный (язык К1)
● Требования к языку

Следующие лекции:
● Что, как и проблемы
● ?

https://ontonet.org/gruppy/vorchalki-o-programmirovanii/videos/razrabotka-yazykov-programmirovaniya-lektsiya-1
https://rutube.ru/video/a626c7d7282380fd7969d2621fe3a31d/

Краткое содержание предыдущей серии и Уроки

4

● Внесение (правильных) ограничений может сократить трудоемкость разработки в десятки и сотни
раз: Модула-0, К1, Тривиль.

● Точечные и органичные конструкции языка могут существенно увеличить выразительность языка
и продуктивность разработчика: Модула-Х, Тривиль.

● Убирание зависимостей очень сильно влияет на скорость и качество разработки: Модула-0 (и
вообще Кронос), Вир/а0, Тривиль

● Для необычных задач надо искать необычные решения: Вир/а0, Тривиль, Арвиль

Вир/а0 (кратко из предыдущей лекции)

5

Основные решение для Вир/а0:
● Выбросить все лишнее, как минимум: Delphi

и DLL
● Простейший язык программирования
● Максимально простой компилятор (чтобы не

отвлекаться на дополнительные работы):
○ Табличный разбор
○ Генерация для простой стековой

машины
○ Табличная эмуляция команд стековой

машины через команды x86
● Простейший бинарный формат, в котором

есть только необходимое
● Слой, отделяющий от платформы (Windows)

Язык Вир/а0:
● Русский язык с пробелами (ЯРМО)
● Разделение семантики по синтаксису:

○ вызов внутренний
○ вызов тезаурусный
○ вызов …

● Типовая система: отсутствует! (FORTH)
○ Один тип данных: Слово64
○ Целое число или указатель
○ Вещественные через вызовы

● Нет описаний переменных
● Семантический анализ: отсутствует! (как в

Модуле-0 - пиши правильно)
● Правое присваивание (легче генерить)
● Оператор “проверить” (guard, гл. шампур)

Вир/а1: Постановка задачи

6

2018
● Разработка языка Вир/а1 для замены Вир/а0
● Основные требования в постановке задачи (исправить а0):

○ “Хорошая” типовая система
○ Полная проверка семантики
○ Переносимость

● Сохранить
○ Компонентность (сборка)
○ Использование в рамках Вир (совместное с Вир/а0)

С чего начать разработку “хорошего” языка?
● Проверять другие языки? Go, Rust
● Перечислять нужные конструкции?

Вир/а1: На что опираться при разработке “хорошего” языка?

7

Нужно построить основу, состоящую из
● Большой цели
● Развернутой формулировки задачи
● Требований, проработанных с нужным уровнем детализации

Основа позволяет:
● упростить разработку за счет отбрасывания не соответствующих

решений
● не пропустить важные свойства и конструкции
● проверять сделанные решения на соответствие
● сделать явным изменение требований

Вир/а1: На что опираться при разработке “хорошего” языка?

8

Постановка задачи для Вир/а1:
● Декабрь 2018: Компонентный ассемблер для цифрового пространства. Часть 1
● Январь 2019: Компонентный ассемблер. Часть 2. Дух языка

По сути, любое современное приложение – это распределенная система, состоящая из нескольких
(множества) распределенных компонент, работающих на разных устройствах, часто виртуальных.

… если мы хотим создать современную систему разработки распределенных программ, надо
проводить эксперименты, а для того, чтобы проводить эксперименты просто и быстро, нужен
экспериментальный язык и экспериментальная среда программирования.

Попытка делать эксперименты на каком-то из существующих языков, к сожалению, как показывает
опыт автора, приводит к тому, что большая часть времени тратится на обходы ограничений
существующих языков, компиляторов и сред исполнения (RTS).

http://digital-economy.ru/stati/komponentnyj-assembler-dlya-tsifrovogo-prostranstva
http://digital-economy.ru/stati/komponentnyj-assembler-chast-2-dukh-yazyka

Промежуточная точка личной истории: середина 2019 года

9

Пять лет работы системным архитектором (2014-2019) позволили выделить и сформулировать
проблемы отрасли и наметить пути их решения:

● Сентябрь 2018: Триада языков программирования (http://алексейнедоря.рф/?p=298)
● Май 2019: Об изготовлении программ и ежиках в тумане
● Июнь 2019: Всеплатформенная разработка или если б я был султан

Необходимость разработки современных языков программирования стала для меня очевидной.

http://digital-economy.ru/mneniya/ob-izgotovlenii-programm-i-ezhikakh-v-tumane
http://digital-economy.ru/stati/vse-platformennaya-razrabotka-ili-esli-b-ya-byl-sultan

Alan Kay о современных языках программирования

10

Интервью 2016 года:
● Q: Do we "really" need more

programming languages?
● Alan Kay: We could use a few "good

ones" (meaning ones that really are about
the realities, needs and scales of the 21st
century).

● Q: Could you list top 3 good ones as per
your opinion?

● Alan Kay: I meant, we could "use three
good ones", not that I knew of three.

https://news.ycombinator.com/item?id=11939851

https://news.ycombinator.com/item?id=11939851

Что я понимаю под современным языком программирования?

11

Современный язык программирования:
● Входит в семейство (минимизация накладных расходов на взаимодействие)
● Безопасность памяти
● Отсутствие неопределенного поведения
● Безопасный на достаточном уровне в соответствии с предметной областью
● Поддержка структурности: как минимум модульность, желательно компонентность
● Поддержка параллельности (гарантии корректности)
● Формальные доказательства, как минимум корректности типовой системы

Всегда ли мы делаем/будем делать на 100% современные языки программирования?
● не обязательно, могут быть другие задачи

Лето 2019: фазовый переход

12

К лету 2019
● я осознаю необходимость разработки семейства современных языков
● на своем опыте пришел к пониманию того, как делать языки, включая:

○ С чего начать
○ Требования к безопасности памяти и ссылок
○ Требования к типовой системе
○ Обязательность поддержки мультиплатформенности
○ Необходимость разных решений для разных целевых областей. Чем “страньше” область,

тем “страньше” решения

Меня позвали в RRI делать язык

Язык К1: Первый корпоративный

13

Август 2019.
● Начало разработки языка для мобильных приложений
● Первые 3 месяца полностью заняты выработкой требований с точки зрения

○ Бизнеса
○ Продуктивности разработчика (читабельность, понимаемость, расширяемость)
○ Безопасности: типов, указателей и т.п.
○ Полноты и ортогональности типовой системы (читать здесь)
○ Возможности эффективной реализации компилятора, инструментов и runtime
○ Эффективности программ (performance, startup time, memory footprint)
○ Что нельзя делать и как нельзя делать

● Примерно через 3 месяца началась разработка языка и прототипирование компилятора
Декабрь 2021

● Язык готов на 90%, компилятор, библиотеки, runtime. Работает на Windows, Linux и на
мобильной платформе с UI

https://ontonet.org/glavnaya/blog/%D1%80%D0%B0%D0%B7%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0-%D1%82%D0%B8%D0%BF%D0%BE%D0%B2%D0%BE%D0%B9-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B-%D1%8F%D0%B7%D1%8B%D0%BA%D0%B0%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F-%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9

Тривиль (2022): пример проработки задачи и требований

14

Требование Важность Уточнение требования

Продуктивность
разработчика

Высокая ● легкость чтения, понимания, написания
● выразительность (есть все необходимые конструкции)

Скорость разработки Высокая ● быстро работающий компилятор и другие инструменты
● минимизация времени на поиск/исправление ошибок и на

отладку => требование безопасности языка

Минимизация объема
работы

Высокая ● простой язык (минимальный набор конструкции)
● в языке нет ничего, кроме того, что необходимо
● простой компилятор

Безопасность языка Высокая ● безопасность ссылок
● управление памятью: сборка мусора
● модульность

Производительность Низкая

Задача: язык для разработки компиляторов и экосистемы
● современный, надежный, удобный
● простой и понятный
● русскоязычный
● минимально достаточный

Зачем нужны требования? Защита языка

15

Как это делается
● Выделяем “железные” требования, которые нельзя нарушать, они должны быть выбиты на

скрижалях и подписаны кровью начальства. Остальные иногда нарушать можно, но редко и
низенько.

● Если предложение очевидно нарушает железное требование или несколько других, то оно
отбрасывается сразу.

● Если не видно сразу, то берется в работу и рассматриваются
○ какие есть варианты решения
○ сделано ли это в других языках, как сделано и какие последствия
○ как это решение взаимодействует с другими (feature interaction)

● Во многих случаях изучение последствий приводит к “доказательству от противного”, то есть к
тому, что последствия нарушают требования.

Самая сложная и трудоемкая и неблагодарная часть разработки языка, это объяснить, что предлагаемая
конструкция, свойство или поведение не может быть добавлено в язык.

История и состояние языков на начало 2026 г.

16

● Вир/а0: 2006-2012, язык, компилятор, среда разработки, приложения, всего 0.5М строк кода
● Вир/а1: 2018-2019, прототип языка и компилятора
● К1: 2019-2021, язык (90%), компилятор, интеграция, запуск на мобильных платформах
● Static ArkTS: в работе с 2022
● Тривиль: 2022-2023, версия завершена в 2023 году
● Арс и Арвиль: 2023-2025, прототипы, работа заморожена
● Язык системный: предварительная работа начата в сентябре 2025

Вопросы

EOF

